Tetrahedron Letters 49 (2008) 5302-5308

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Ga(OTf)₃-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines

Xiang-Qiang Pan^a, Jian-Ping Zou^{a,*}, Zhi-Hao Huang^a, Wei Zhang^{b,*}

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, 1 Renai Street, Suzhou, Jiangsu 215123, China ^b Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA

ARTICLE INFO

Article history: Received 16 May 2008 Revised 17 June 2008 Accepted 18 June 2008 Available online 22 June 2008

ABSTRACT

Condensation reactions of *o*-phenylenediamine and two equivalents of acetophenone under gallium(III) triflate catalysis produce biaryl-substituted 1,5-benzodiazepines. Similar reactions of *o*-phenylenediamine or *o*-aminothiophenol and *o*-hydroxy chalcones lead to formation of functionalized 1,5-benzodiazepines and 1,5-benzothiazepines in good to excellent yields. The *ortho*-hydoxy group of chalcones is crucial for this unprecedented condensation process.

© 2008 Elsevier Ltd. All rights reserved.

etrahedro

1,5-Benzodiazepines and 1,5-benzothiazepines are privileged heterocyclic ring systems because of their broad and important pharmacological properties.¹ Many functionalized benzodiazepines have been used as analgesic, sedative, anti-convulsant, anti-anxiety, anti-depressive, and hypnotic agents.² In addition to their biological activities, they are valuable synthetic intermediates for other heterocyclic compounds such as triazolo-, oxadiazolo-, oxazino-, and furanobenzodiazepines.³

A general way to construct the ring skeletons of 1,5-benzodiazepine and 1,5-benzothiazepine is via reactions of o-phenylenediamines (o-PDA) or o-aminothiophenol (o-ATP) with ketones,⁴ α , β unsaturated carbonyl compounds, or β -haloketones.⁵ Catalysts such as BF₃·Et₂O, NaBH₄, PPA/SiO₂, MgO/POCl₃, Amberlyst-15, Yb(OTf)₃, Al₂O₃/P₂O₅, AcOH/MW, sulfated zirconia, NBS, and ionic liquids⁶ has been used to improve the reaction efficiency.

Ga(OTf)₃ is a water-tolerant strong Lewis acid catalyst, which has been used in organic reactions such as Beckmann rearrangement,⁷ Friedel–Crafts reactions,^{8,9} dehydration of aldoximes,¹⁰ and highly regioselective rearrangement of 2-substituted vinylepoxides,¹¹ aqueous asymmetric Mukaiyama aldol reactions,¹² and constructions of fused-bicyclolactones¹³ and fluorinated fivemembered heterocycles.¹⁴ As a part of our continuous effort on the study of the catalytic properties of gallium(III) salts,¹⁵ we report herein a new utility of gallium(III) triflate catalyst for condensation reactions of *o*-phenylenediamine or *o*-aminothiophenol with carbonyl compounds to form functionalized 1,5-benzodiazepines and 1,5-benzothiazepines. Compared to other methods reported in the literature, gallium(III)-promoted reactions are straightforward, give good yields, and also lead to the discovery of a novel transformation for heterocycles.

o-Phenylenediamine and acetophenone were chosen as the substrates for method development reactions (Eq. 1). Table 1 shows the results using different reaction solvents under the conditions

Table 1

Ga(OTf)₃-catalyzed reactions of o-phenylenediamine and acetophenone^a

Entry	Solvent	Ga(OTf) ₃ (mol %)	Time (h)	2a Yield ^b (%)
1	CH ₂ Cl ₂	10	12	56
2	MeOH	10	12	Trace
3	1,4-Dioxane	10	12	Trace
4	CH ₃ CN	10	4	92
5	CH ₃ CN	5	12	50
6	CH ₃ CN	1	24	23
7	CH ₃ CN	20	4	94
8	CH ₃ CN	0	12	_ ^c

^a Ambient temperature.

^b Isolated yield.
 ^c Imines were the major product.

^{*} Corresponding authors. Tel./fax: +86 512 65112371 (J.-P.Z.); tel.: +1 617 287 6147; fax: +1 617 287 6030 (W.Z.).

E-mail addresses: wuyanhong@pub.sz.jsinfo.net (J.-P. Zou), wei2.zhang@umb. edu (W. Zhang).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.06.082

Table 2

1,5-Benzodiazepines from o-phenylenediamine and ketones

^a All products were characterized by ¹H and ¹³C NMR and HRMS spectra.

^b All products were purified by flash column chromatography.

^c Product ratio was determined by ¹H NMR.

of 10 mol % catalyst and 4–12 h at room temperature. Acetonitrile was found to be a good solvent (Table 1, entry 4). Catalyst loading test was also conducted. It was found that 10 mol % of $Ga(OTf)_3$ was sufficient to catalyze the reaction, and gave 1,5-benzodiazepine in 92% yield (Table 1, entry 4). Increasing the amount of $Ga(OTf)_3$ to 20 mol % did not significantly improve the yield (Table 1, entry 7). However, if the amount of the catalyst was reduced to 5 and 1 mol %, the product yield was reduced to 50% and 23%, respectively (Table 1, entries 5 and 6). In a control reaction without using the catalyst, no desired product was observed after 12 h.

The best condition for the synthesis of 1,5-benzodiazepine was found to be as follows: A mixture of *o*-phenylenediamine (2 mmol), acetophenone (4.5 mmol), and Ga(OTf)₃ (0.2 mmol) in 10 mL of MeCN was stirred at room temperature for 4–6 h.¹⁶ This general procedure was used for reactions of *o*-phenylenediamine with different aryl- and alkylketones (Table 2).

Reactions of *o*-phenylenediamine with acetophenones bearing electron-donating and electron-withdrawn substitution groups gave products in good to excellent yields (83–92%) (Eq. 2) (Table 2, entries 1–6). Reactions of alkylketones such as acetone, pentanone-3, and cyclohexanone also gave benzodiazapines (Table 2, entries 7–10), but low yields were obtained from the more hindered alkylketones (Table 2, entries 8 and 9). 4-Nitrobenzene-1,2-diamine was used as the substrate to evaluate the substituent effect on *o*-phenylenediamine. Good product yield (86%) and regioselectivity (91:9) were obtained from this reaction (Table 2, entry 10).

The reaction of α , β -unsaturated ketone (chalcone **4a**) and *o*phenylenediamine **1a** was carried out to study the reaction scope (Eq. 3). No desired condensation product was detected from the reaction conducted at 60 °C (Table 3, entry 1). We wonder if the amino group is not nucleophilic enough for the addition. Thus, *o*-aminothiophenol was used to replace the *o*-phenylenediamine for the reaction. As we anticipated, 2,4-diphenyl-1,5-benzothiazepine **5b** was isolated at 30% yield (Table 3, entry 2). Even the yield was low, but it encouraged us to further explore the reaction of chalcone derivatives. To our surprise, when 2-hydroxychalcone **4b** was used as the substrate, the reaction with *o*- aminothiophenol

Table 3

Synthesis of 1,5-benzothiazepines/1,5-benzodiazepines from o-aminothiophenol/o-phenylenediamine and chalcones

^a Structures were characterized by ¹H and ¹³C NMR and HRMS.
 ^b All products were purified by flash column chromatography.

Figure 1. X-ray structure of 5h.

3a gave the condensation product **5c** in quantitative yield (Table 3, entry 3).¹⁷ To find out the role of the 2-hydroxy group, other 2-hydroxychalcone derivatives were tested (Table 3, entries 4–8). The results showed that these reactions also gave high product yields. Among them, the structure of **5h** was confirmed by X-ray analysis (Fig. 1). To evaluate the influence of the hydroxy group, chalcones with the hydroxy group at different positions were tested. The reaction of 4-hydroxychalcone with *o*-aminothiophenol

only gave 35% yield of product (Table 3, entry 9). The reaction of 2'-hydroxychalcone did not afford any product (Table 3, entry 10). Results from these two reactions indicated that the hydroxy at 2-position of chalcone is critical for the condensation reactions. To verify this observation, *o*-phenylenediamine was re-employed for the reaction with 2-hydroxychalcone. Indeed, the reaction proceeded and afforded 1,5-benzodiazepine product in 85% yield (Table 3, entry 11). Reactions of 2-hydroxychalcones **4c** and **4d** with *o*-phenylenediamine also generated products **5k** and **5l** in 84% and 88% yield, respectively (Table 3, entries 12 and 13).

A mechanism for the reaction of *o*-phenylenediamine **1a** or *o*aminothiophenol **3a** with 2-hydroxychalcone derivatives **4** to form 2,4-disubstituted 1,5-benzodiazepine or 2,4-disubstituted 1,5-benzothiazepine was proposed (Scheme 1). At the first step, catalyst Ga(OTf)₃ and 2-hydroxychalcone **I** form complex **II**, which further reacts with **III** to afford complex **IV** and then **V** after losing H₂O. The XH group attacks the C=C bond and leads to the formation of condensation product **5**. In this process the 2-hydroxy group in chalcone has the following two important roles: (1) the 2-hydroxy group involves in the formation of stable complex **III** by chelating with Ga(OTf)₃ and facilitates the dehydration process to from complex **V**; (2) the 2-hydroxy makes the α , β -unsaturated carbonyl more reactive toward the addition of XH.

We have also explored the reactions of aniline or thiophenol with chalcone using $Ga(OTf)_3$ as a catalyst. No Michael addition product was observed (Scheme 2).

In summary, $Ga(OTf)_3$ was found to be an effective catalyst for the synthesis of 2,2,4-trisubstituted-1,5-benzodiazepines under mild reaction conditions. $Ga(OTf)_3$ also promotes the reactions of *o*-phenylenediamine and *o*-aminothiophenol with 2-hydroxychalcone derivatives to form 2,4-disubstituted-1,5-benzodiazepines and 2,4-disubstituted-1,5-benzothiazepines through a previously unreported condensation process.

Scheme 1. Proposed mechanism for Ga(OTf)₃-catalyzed reaction of 2-hydroxychalcones with o-phenylenediamine or o-aminothiophenol.

Scheme 2. Reaction condition: chalcone (1.0 equiv), aniline, or thiophenol (1.1 equiv), Ga(OTf)₃ (10 mol %), CH₃CN, room temperature, 6 h.

Acknowledgement

J.P.Z. thanks the financial support from National Natural Science Foundation of China (No. 20772088).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.06.082.

References and notes

- (a) Schutz, H. Benzodiazepines; Springer: Heidelberg, 1982; (b) Landquist, J. K.. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 1, pp 166–170.
- Randall, L. O.; Kappel, B. Benzodiazepines. In Garattini, S., Mussini, E., Randall, L. O., Eds.; Raven Press: New York, 1973; p 27.
- (a) Aversa, M. C.; Ferlazzo, A.; Gionnetto, P.; Kohnke, F. H. Synthesis 1986, 230;
 (b) Essaber, M.; Baouid, A.; Hasnaoui, A.; Benharref, A.; Lavergne, J. P. Synth. Commun. 1998, 28, 4097; (c) Xu, J. X.; Wu, H. T.; Jin, S. Chin. J. Chem. 1999, 17, 84; (d) Zhang, X. Y.; Xu, J. X.; Jin, S. Chin. J. Chem. 1999, 17, 404; (e) Reddy, K. V. V.; Rao, P. S.; Ashok, D. Synth. Commun. 2000, 30, 1825.
- 4. Ried, W.; Torinus, E. Chem. Ber. 1959, 92, 2902.
- 5. Stahlhofen, P.; Ried, W. Chem. Ber. 1957, 90, 815.
- (a) Herbert, J. A. L.; Suschitzky, H. J. Chem. Soc., Perkin Trans. 1 1974, 2657; (b) Morales, H. R.; Bulbarela, A.; Contreras, R. Heterocycles 1986, 24, 135; (c) Jung, D. I.; Choi, T. W.; Kim, Y. Y.; Kim, I. S.; Park, Y. M.; Lee, Y. G.; Jung, D. H. Synth. Commun. 1999, 29, 1941; (d) Balakrishna, M. S.; Kaboundin, B. Tetrahedron Lett. 2001, 42, 1127; (e) Yadav, J. S.; Reddy, B. V. S.; Eshwaraian, B.; Anuradha, K.

Green Chem. **2002**, 4, 592; (f) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. *Tetrahedron Lett.* **2001**, 42, 3193; (g) Kaboudin, B.; Navaee, K. *Heterocycles* **2001**, 55, 1443; (h) Pozarentzi, M.; Stephanidou, S. J.; Tsoleridis, C. A. *Tetrahedron Lett.* **2002**, 43, 1755; (i) Reddy, B. M.; Sreekanth, P. M. *Tetrahedron Lett.* **2003**, 44, 4447; (j) Kuo, C. W.; More, S. V.; Yao, C. F. *Tetrahedron Lett.* **2006**, 47, 8523; (k) Du, Y. Y.; Tian, F. L.; Zhao, W. Z. *Synth. Commun.* **2006**, 36, 1661.

- 7. Yan, P.; Batamack, P.; Prakash, G. K.; Olah, G. Catal. Lett. 2005, 103, 165.
- 8. Yan, P.; Batamack, P.; Prakash, G. K.; Olah, G. Catal. Lett. 2003, 85, 1.
- 9. Kobayashi, S.; Komoto, I.; Matsuo, J. Adv. Synth. Catal. 2001, 343, 71.
- 10. Yan, P.; Batamack, P.; Prakash, G. K.; Olah, G. Catal. Lett. 2005, 101, 141.
- 11. Deng, X. M.; Sun, X. L.; Tang, Y. J. Org. Chem. 2005, 70, 6537.
- 12. Nguyen, R. V.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 17184.
- Li, H. J.; Tian, H. Y.; Wu, Y. C.; Chen, Y. J.; Liu, L.; Wang, D.; Li, C. J. Adv. Synth. Catal. 2005, 347, 1247.
- 14. Prakash, G. K. S.; Mathew, T.; Panja, C.; Vaghoo, H.; Venkataraman, K.; Olah, G. A. Org. Lett. **2007**, 9, 179.
- 15. Huang, Z.-H.; Zou, J.-P.; Jiang, W.-Q. Tetrahedron Lett. 2006, 47, 7965.
- 16. A general procedure for synthesis of 2,2,4-trisubstituted-1,5-benzodiazepines **2** (Table 2): A mixture of o-phenylenediamine (2 mmol), acetophenone (4.5 mmol), and Ga(OTf)₃ (0.2 mmol) in 10 mL of MeCN was stirred at room temperature for 5–6 h. After completion of the reaction (TLC analysis), the reaction mixture was diluted with water, and extracted with dichloromethane (2 × 10 mL). The combined organic layer was dried over Na₂SO₄, concentrated to dryness in vacuo, and the residue was purified by column chromatography (eluted with 2:8 EtOAc-petroleum) to afford pure diazepine.
- 17. A general procedure for synthesis of 2,4-disubstituted-1,5-benzodiazepines and 2,4-disubstituted-1,5-benzothiaze-pines 5 (Table 3): A mixture of o-aminothiophenol (1.1 mmol), chalcone (1 mmol), and Ga(OTf)₃ (0.1 mmol) in 10 mL of MeCN was stirred at 60 °C for an appropriate time. After completion of the reaction (TLC analysis), the residue was purified by column chromatography (eluted with 2:8 EtOAc-petroleum ether) to afford pure thiadiazepine.